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In this paper we obtain the equivalence of the large deviation principle for 
Gibbs measures with and without an external field. For the Ising model, the 
equivalence allows us to study the result of competing influences of a positive 
external field h and a negative boundary condition in the cube A(B/h) as h'~0 
for various B. We find a critical balance at a value B, of B. 
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1. I N T R O D U C T I O N  

Cons ide r  the Ising mode l  on Z d with posi t ive external  field h, in a cube 
A(B/h)  with side length B/h, and negat ive  b o u n d a r y  condi t ion .  In teres t ing  
results a b o u t  the compe t ing  influences of  a posi t ive external  field h 
and  a negat ive  b o u n d a r y  cond i t ion  as h ' ~ 0  have been ob ta ined  by 
Mar t i ro syan ,  (61 Schonmann ,  (~tj and  S c h o n m a n n  and  Shlosman.  ~2"n3~ 

S c h o n m a n n  and Sh losman  ~3) prove  that ,  for D = 2 ,  if one looks  at  the 
G i b b s  measure  in the cube A(B/h)  with external  field h and negat ive 
b o u n d a r y  condi t ion ,  then there exists a Bo > 0 such that  when 0 < B < B o 
one sees only the ( - )  phase  as h x~0, but  when B >  Bo, one sees a ( + )  
phase  inside "the cube as h x~ 0. Thei r  tools  are  assoc ia ted  with the large- 
dev ia t ion  pr incip le  in the case of  no external  field. This  suggests look ing  at  
the re la t ionsh ip  between the large devia t ion  pr inciples  with and  wi thout  
external  field. In this paper ,  we will p rove  tha t  there  is equivalence between 
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the large-deviation principles for random fields (not only for the Ising 
model) with and without the external field for all dimensions d~>l 
(Theorem 2.1). We apply this result to the d-dimensional Ising model to 
prove that, for d >~ 2 and T subcritical, there exists a critical value B o such 
that different phenomena occur for B <  Bo and B > B o  in terms of the 
average spin (see Section 3 for more details). When d =  2, we verify that the 
critical value Bo coincides with the one obtained by Schonmann and 
Shlosman.~ ~3) While studying the competing influences of the positive exter- 
nal field h and the negative boundary condition in A(B/h) for d =  2, one 
obtains a large-deviation principle which complements some results of 
Schonmann and Shlosman) TM We briefly discuss the case of B - B  0. 

We use the compactness method in large deviation theory developed 
by O'Brien and Vervaat? s~ 

2. THE LARGE DEVIATION RESULT 

Let E c R be a finite set. One can take E to be more general, for exam- 
ple, compact, but we restrict ourselves for simplicity. Let ~ = E z'l be the 
configuration space. For  all finite sets A c Z a, define f2(A)= E'L Typical 
configurations in ~ or f2(A) are denoted by e, r/ ..... Denote the value of o 
at x e Z  a by 0.,.. Let H~.,~(o) be an energy function in the set A, with 
boundary condition 17, evaluated on the configuration o, for example, (3.1). 
Then 

1 s 
H.,. , , . . , .(o)=~H:,. , ,(~)--~ }-" 0,. (2.1) 

A" ~ .'1 

is called the energy with the external field s. We include the factor 1/2 to 
agree with the notation of Schonmann and Shlosman. c~3~ Let f l=  l /T,  
where T is the temperature. Then the Gibbs measure in A with boundary 
condition r/, temperature T, and external field s is defined by 

PA.,1. r..,.(a) := exp( -flH.,.,1..,.(o))/Z,f.,1. r ..... VOe ~(A) (2.2) 

where Z,~. ,~. 7-..,. is the normalizing constant given by 

Z.,.,,. r.., := ~ exp(-flH.,.,,..~(t7)) (2.3) 
n" ~? . ~ (  , ' l  ) 

Expectation with respect to p,l.,~, r..,. is denoted by E,,.,. r..,.. Note that/.t A. ,~. 7-. 0 
is the Gibbs measure in the absence of an external field. 
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For  all h > 0 ,  let A(1/h) be the cube in Z d with side length 1/h and 
centered at the origin. The average of a in A(l/h) ,  called the average spin, 
is defined by 

XA,,/m(a) :=(I/h) -d Y" a,. ,  Vaeg2(A(1/h)) (2.4) 
x ~  :1t I / h )  

The distribution of X,.,uh~ under ,u.4~/h~.,s. r..; is denoted by Pm~/h~.,~. r..,.. In 
particular, Pm~/h~.,~.r.o is the distribution of X.~ct/h ~ with respect to the 
Gibbs measure without external field. 

D e f i n i t i o n .  Let p/, be probability measures on R, h > 0. Let ~j, be 
positive constants such that ~h ~ O~ as h '~0. We say that {kth} satisfies a 
large-deviation principle (LDP)  with constants (0~h) if there exists a lower 
semicontinuous (Isc) function I : R - - ,  [0, oo] such that for all open sets 
G c R and closed sets F c  R 

1 
lim sup - -  log p/,(F) ~< - inf I(x) (2.5) 

h "~O 0~i, .x'E F 

1 
lim i n f - -  log/~h(G) >/ -- inf I(x) (2.6) 

h "-. 0 (X h x ~ G 

The function I is called the rate function. The L D P  for h N 0 along a sub- 
sequence is defined similarly. 

T h e o r e m  2.1. Suppose that, for some a0>~0, {PA(uh).q.T, aoh} 
satisfies an L D P  with constants ((I/h) a- t )  and rate function I.,,, then for 
all a>>.O, {PA(~/h~.,~.r.,.,} satisfies an L D P  with the same constants 
((1/h)d-l)  and rate function 

I . (x)=I, , , , (x)  f l ( a - - a ~  - \ V x ~ R  (2.7) 
2 ,, z / 

where I,,*, is the convex conjugate of I,,,, defined by 

I.*,(t) : = s u p { t x - I . o ( x ) :  x e R } ,  V t e R  (2.8) 

The second term on the right side of (2.7) comes from the difference 
of the external fields, while the third comes from the difference of the nor- 
malizing constants. Note that the LDP's  in this theorem have the rate 
((1/h)d-t) ,  which is appropriate for phase coexistence regions. This 
theorem says, in particular, that if we have an L D P  without external field, 
then we have a corresponding L D P  with external field. The only result we 

822/86,1-2-1 I 
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know giving an L D P  without external field is that of Schonmann and 
Shlosman ct3~ for the 2D Ising model, which extends results of Ioffe. ~4"5~ 
However, in higher dimension, even without such an LDP, we can apply 
this theorem along subsequences to obtain a critical value of B. 

Since the distribution of X.,  An,)under the Gibbs measure p,,  S/h). ,. T. h 
is Pm~/h').,~. 7". Bh', with h' =h/B, we have the following corollary: 

Corollary 2.2. If  {P,.,t)n,).,~.r.o}, with no external field ( a o = 0 ) ,  
satisfies an L D P  with constants ((l/h) a-~) and rate function Io(x), then 
{P.f(Bn,).,t.r.h}, with the external field h, satisfies an L D P  with constants 
((B/h) d-)) and rate function IR(x), and vice versa. Moreover,  the rate 
functions are related by 

l,(x)=Io(x)-fl-ff~x+I*(fl-ffff), ,.," e R (2.9) 

3. APPLICATIONS TO THE ISING MODEL 

The discussion in this section can be extended to all finite-range 
ferromagnetic models. Let E =  { - 1, 1} and let the energy H~.,r in (2.1) be 

H,.,,(~) := - ~ ~.,.~.,,- ~. a,.r/.,. (3.1) 
i x .  y} c , I .  I x - y l  = I x e . l .  y � 9  A". [ .x - -Yl  = I 

When r / - - 1  or +1 ,  we replace r/ by - or + .  It is well-known that 
P.,, ~/h~.-. r..,. (resp. p . ,  ~.'h~. +. r..,.) converges weakly as h ",, 0 to a probability 
measure denoted by p _  r..,. (resp p+.  r.,)- There is a critical temperature 
T,. > 0 such that for all T < T,., the ( - ) phase p . r. o and the ( + ) phase 
P +. r. ~ are different, in which case a phase transition occurs. The spon- 
taneous magnetization m* := E+. r. o[cro] is positive for all T subcritical. It 
is also known that without external field, 

X. j c  ,.,/,~ ~ - m r  (3.2) 

a.s. with respect to/2 -.  r. o as h ~ 0. The convergence is not exponential at 
the rate (l/h) a, as one might expect, but may be exponential at the rate 
( 1 / h ) a - t  the order of the volume of the boundary of A(1/h). This was first 
proved by Schonmann ~"~ for low temperatures. An interesting related 
problem involves the competing influences of the Gibbs measure in A(B/h) 
with external field h and negative boundary condition as h '~0  for various 
B. Martirosyan ~6~ showed that when T is small, there is a ( + ) phase in the 
cube A(B/h) as h '~0  for all B greater than some B,_(T). Schonmann]  ~ 
among others, re-proved Martirosyan's result and extended it by showing 
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that only the ( - )  phase appears in A(B/h) as h x~0 when T is small and B 
is less than some B~(T). As noted by Schonmann, t ~  it is unknown 
whether B~(T)=Bz(T) in general. But when d = 2 ,  Schonmann and 
Shlosman ~3~ completely solved this problem by proving the existence of 
the critical value B0 for all subcritical T and giving it explicitly. In this sec- 
tion, we will look at the same problem for all d~> 2 and subcritical T. 
However, we consider average spins rather than ( + )  or ( - )  phases 
because we have large deviation techniques only in this case. We will prove 
that there exists a critical value Bo such that X.,B/h~ converges to - m *  
under PA~e,'hL . r.h as h h 0  only when B<Bo (Theorem 3.2). 

When d = 2, we will see that our Bo is the same as that of Schonmann 
and Shlosman, ~L~ using their LDP. Their methods are more sophisticated 
and establish the squeezed Wulff shape. Our main contribution is to 
provide some insight for the case d >  2. 

To state our theorems, we need a preparatory lemma. Define, for all 
t~R,  

~( t )=l imsup ha-I log E.jll /hl,- .r .o[exp(t(1/h) a-I X, llllh~)] (3.3) 
h x, 0 

Note that qS(t) is a finite, continuous convex function in R. Define 

Bo = Bo( T) := 2Tsup{ t: qS(t) = - -m' t }  (3.4) 

l . e m m a  3.1. Let d~>2 and let T be subcritical. Then: 

(a) For  all t~<0, qS(t) = - m * t  and for some t > 0 ,  ~ ( t ) >  - m ' t ,  so 
that 0 ~< Bo < or. 

(b) If there exists a B > 0 such that 

lim E.,•lh,. _. r. hEao] = --m* (3.5) 
h ' ~ O  

then B o > 0. In particular, ~t~ Bo is positive for all sufficiently small T >  0. 

(c) Define / : =  q5*, the convex conjugate of q5, and 

BR /BR\  
]B(X) : = [ ( X ) - - ~ - X + ~ s  VxER (3.6) 

Then for all B > 0, ]B is a nonnegative lsc convex function, and the set 
~B := {x: f ( x ) = 0 }  is nonempty. 

(d) For  all 0 < B < B o ,  ~ B = { - m * } .  For  all B>Bo,  ~ 8 c  
( - m * ,  oo). -~e is a singleton except for countably many B >  0. 
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By Lemma 3.1(c), we can define m(B):=inf.,.~.~nx. It turns out that 
re(B) will be the weak limit of X.,,B/h) under ~,,,Ba,).-. r.h as h N0 when 
0 < B < Bo, and as h ",, 0 along some subsequence, when B > Bo. 

Theorem 3.2. Let d>~2 and let T be subcritical. Define the con- 
stants Bo and re(B) as above. Then: 

(a) If 0 < B < B o ,  then for all e > 0 ,  

l imsup logp .us , ,h )_ . r .h ( lX .u~/h)_(_m, )[ )< ~ f l (Bo--B)  e (3.7) 
,, ,.o 2 

(b) For all B > Bo, if ~A is a singleton [ true for almost all B > B. by 
Lemma 3.1(d)], then re(B) > - m *  and there exists a subsequence h,, x 0  
such that for all e > 0. 

/~) , / -  I 

lira sup - -  logp uB/h,). -. r.h,,(]X.u~..h,,,--m(B)l >~e)~< -c , :  (3.8) 

where c,:=[B(m(B) --e) A [o(m(B) +e)  >0.  

In Theorem 3.2, we see that for B < Bo, the asymptotics of the average 
spins is like that for the ( - ) phase, whereas for B > Bo, the asymptotics of 
the average spins is different. Hence Bo is a critical point of B. 

In the case d = 2 ,  we will see in Theorem 3.3 that .~-B in Lemma 3.1(d) 
is a singleton for all B > B  o and that the convergence in Theorem 3.2(b) 
holds along the whole sequence h ",, 0. It seems to us there is no reason to 
believe this fails for d >  2, although our method does not yield the result. 

Let us now consider d = 2 .  Then Theorem 1 of Schonmann and 
Shlosman ~ ~3)says that for all subcritical T, { P ,  ~..'h).-. r. o} satisfies an LDP 
with constants ( l /h) and rate function given by 

( 

l ( x ) = f l ]  4rT x /~r  Jx/~r - x if O~T <~ X <~ m }  (3.9) 

otherwise 

where ~ r = ( 1 6 f r  - 2 , 2 tO r)/( 2m r), e r = 2 m * l r  - -m*,  and mr,  r r ,  and l r  are 
positive constants, which are explicitly given in terms of the Wulff f imc- 
tional, Wulffshape and squeezed Wulffshape. Putting this theorem together 
with our Corollary 2.2 and Lemma 3.1, we have the following result. 

Theorem 3.3. Consider the two-dimensional Ising model below 
the critical temperature. Let I be given by (3.9). Then. 
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(a) For all B > 0, the distribution { P<, R/h), -. r, h} of the average spin 
X~(8,,h) under/L.f(n<h).-, r.h satisfies an LDP with constants (B/h) and rate 
function IB given by 

Is(x)=I(x)--fl---~-~ x + I* (P-~-~), Vx~R (3.10) 

(b) The Bo defined in (3.4) equals (4fr+cor)/(2m*). 

(c) For all B # Bo, Is(x)= 0 has a unique solfition given by 

~-m* if 0 < B < B o  
m ( B ) = [ m * - 6 r / B ' -  if B> Bo (3.11) 

So, in particular, the LDP in (a) implies that X.,(~h) converges exponen- 
tially to re(B) under/L.~(/~/h).-, r.h at the rate (B/h) as h ",,0. 

(d) I~,,(x)=0 has exactly two solutions m* and m(Bo):= 
2 m r - ~ r / B  o. So the LDP in (a) implies that only m* or m(Bo) may 

possibly be a weak limit of X.~(z~,,/h) under /~A(B,),'h).-.r.h as h~0 ,  and the 
weak convergence, / f  it exists, is not exponential at the rate (1//1). 

R e m a r k  3.1. (a) The critical value Bo and the limits re(B) are the 
same as those in Schonmann and Shlosman. (~3) Our large-deviation result 
in (a) refines their Theorem 2a( 1 ) and 2b( 1 ). 

(b) Note that, if the critical value B() in Theorem 3.2 is positive, then 
X.,~h) converges to - m *  under P,~(~,h).-. 7-.o exponentially at the rate 
(l/h)a-t as h'~0. We believe the converse holds, too. But we do not have 
a proof. A problem which seems out of reach at present is to prove that, 
when d >  2 and B > Bo, there also appears a droplet o f ( + )  phase in the 
box A(1/h) with negative boundary condition as Schonmann and 
Shlosman ~3) describe for d = 2  in their Theorem 2. 

4. THE PROOFS 

We will need an analogue for large deviations of Prohorov's Theorem 
for weak convergence. This result about compactness in large deviation 
theory was proved by O'Brien and Vervaat c8) and extended by O'Brien. ~7) 
We state the result for the bounded family of random variables XA( ~,,h)- 

Proposition 4.1. Consider 

{P...I/h).,1. r..I,(dx) =IZ+1()/h).,~. r.,,h(X.1(I/h) + dx)}, a>~O 
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Then for any subsequence of  (h),  there exists a subsubsequence  h,, "~ 0 such 
that  {P. , .w, .~. , .r . .h, ,}  satisfies an L D P  with the constants  (1 /h . )  a - I  and 
some rate function ~ .  Moreover ,  by Varadhan ' s  Integral  Theorem,  ~ the 
pressure function ~u(t) for this subsubsequence  exists and 

gt(t) := lira h;(-)  log EA, t,,h,,). ,i. r . . , , . [ exp ( t ( l / h , ,  )d-  i Xmj//,,))] 
It ~ 'Z 

= s u p { t x - - ~ C ( x ) :  x e R }  = J * ( t ) ,  V t ~ R  

In part icular,  

(4.1) 

(4.2) 

J ; ( x ) > ~ c o n v ( J ) ( x ) = . Y * * ( x ) =  ~ * ( x ) ,  V x e R  (4.3) 

where c o n v ( J ) ,  called the convex hull of  J ,  is the greatest  Isc convex func- 
t ion not  exceeding .y.~9~ 

P r o o f  o f  T h e o r e m  2. 1. Let a >~ O. Let x e R and e > O. Consider  

/ ' t . , I  W,I. ,. r. , , h ( X .  i.'J,~ ~ ( x  - e, x + e)) 

/l... J/h~... r. ,,,,h(XA(l/h) ~ (x -- e. x + e)) 

~x,,,, h,l-~ ~ I.," ........ +,:1) exp( - f i l l . ,  t/h>. ,. ,,h(O') ) ZAI t/l, ~. ,s. T. ,,,,h 

-- ~ X , , , , , , ~ I  .......... +,:~) exp( --f i l l . . .  I/h~. ,. ,,,,h(a)) " Z ,  I/h~. q. r, ,,I, 

- :  At " A2 (4.4) 

Note  tha t  

E ~. i/i,). .. 7". ,,,,hi exp( t ( l /h )  u -  ' X ., I t/h))] 

Y ~ I . .  I/h~ exp( - f i l l . . .  I/h~. ,I..,,,,(a) + th Z ..... ~ L,/,~ a,.) 

Z A ( I / h ) .  q. "1", aoh 

Z , l ( 1 , h )  q, T, ( a ( l + 2 l T l h  

Z A (  I/h 1. q. 7". tloh 

[ = A _ ~  ~ if t = ( a - a o ) / ( 2 T ) ]  (4.5) 

Note  that  XA~t/h ) is bounded  for all h > 0 .  So by Varadhan ' s  Integral  
T he o rem ~ one has 

q~,,,,(t) :=  lim h d -  i log E.I~ j/,,~. ,1. r. , , ,h[exp( t (  1 /h )" -1  X ,  r I/I,7)] 
h',,O 

= s u p { t x - l . . ( x ) :  x ~ R }  * = I . . ( t ) ,  V t E R  (4.6) 
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So, letting t = f l ( a - a o ) / 2  in (4.5) and (4.6), we see that 

lim h a- i log d2 
h N O  

lim h a - '  { [ ' ] }  = - - , , , o  logE.,,t/h,.,.r.,,.h exp f l(a--ao) (17a -  
2 \ h i  X,.  i,,~ 

( f l ( a - o o , )  . ( f l ( a 2 a o )  ) = - 45,,,, ~ = - I 0 .  (4.7) 

Note that  

log d 1 rh { } 
=.,,,hdss log ~ exp[-flH.,, ,/ , , , . , , . .~(a)] ds 

.'t" Ill hj(O')E (.X"- ,';. A" + I:) 

F "  Z v,,,h,,~,~, ........ +,:, �89 (X ..... ~, t,, a.,.) exp( -f in. . , ,  t,,,.,..,.(a)) 

= ~ 32 x.,,,,,~ ~ I ......... +,:) exp( --filiAl t , , . . ,  .,.(a) ) 
ds 

F"" Z . r , ,  , . ,~  ~ c ......... . +  ,:~ �89 1/h ) a X .  i/,,,(a) exp( - f i l l ,  ,/i,,....,.(a)) 

(4.8) 

So by the mean value theorem, log A~= ( a - - a o ) h C h  .... where the constant  
G,. ,: satisfies 

] \ ~ /  (x-e) < G, ,...-~-2 \h,/ (x+e) 

Therefore. 

l i m l i m h a  l logz l  I f l ( a -ao )  - -  x (4 .9)  
~: ",. 0 h ' ~ O  2 

Using (4.9), (4.7), and (4.4), we obtain 

lim lim h a- i log ~.., I/h>. ,,. r. ,a,(X,. I,h) e (X -- e, X + e)) 
t : N O  h N O  

= lim lim h a-  l log/~.. I/h). ,. r. ,,.h(Xm I/h) e (X -- e, X + e)) 
c x. B h ~. O 

. ---------~--- x--I,,,, (4.10) 
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if either of the two limits exists. Since {PAl ~/~i~, ,~, 7", ,,,h(X.'U ~/h~ ~ dx)}  satisfies 
an LDP with the constants ( ( l / h )  '~- ~) and rate function I,,,, by a standart 
expression for the rate function, (ref. 2, p. 35), we have 

1,0(x) = - l i m  l i m h  ' t-I  logl..t,,Cl/hl.,,,r.,,h(X,U,/h ~ e ( x - - e , x  +e ) ) ,  V x E R  
t: "-~ 0 h ' - . 0  

(4.1]) 

Actually, the limit in (4.11) with respect to h ",,0 exists only for almost all 
e > 0. But this limit expression will not cause confusion because of the 
monotonicity (of the limits with respect to h "~0) in e >  0. So the limit in 
the left side of (4.10) exists, too. Define 

I , , ( x ) =  - l i m  l imh a- t  l o g l L ,  t/,,~,,~.r.,, , ,(X.~t/,,~E(x--e,x +e) ) ,  V x E R  
.,:"..0 hx.,O 

(4.12) 

Then (2.7) follows from (4.10). It now remains to prove that I,, is the 
correct large-deviation rate function of {/l,t~ t/h ~. ,s. r. ah( X.U t/h ~ ~ dx  ) } with 
the constants ((1/h)'/-~). First of all, since I,,, is lsc, I,, is also lsc. The 
lower bound (2.6) is an immediate result of the definition of I, .  The upper 
bound (2.5) for all compact sets follows from (4,12) and a standard argu- 
ment. So the upper bound (2.5) holds for all closed sets, because X.f~ta,~ is 
bounded. | 

R e m a r k  4.1. The above proof indicates that, if the condition of 
Theorem 2.1 holds only along a subsequence h,, "~ O, then the conclusion 
holds along the same subsequence. 

Proo f  o f  L e m m a  3.1.  (a) Using (4.5) with % = 0  and I1= - 1 ,  we 
obtain 

1 ~, i-  l 

= log Z'u ~/h~. - .  7., 2,rh 
Z,.ll I / h ) .  - .  T ,  0 

= f2.,Th d 
~o ~ (log Z , ,  I/h~. - .  r..,3 ds 

p ( 1 7 "  f ' - ' "  = 2  \ h i  .'o E,ul/,,~. - .  r,.,.[ X,,,i/,,i] ds 

= E.u l/h~, - .  7". 2rh,,[X.,~ t/h~] du 
) 

(4.13) 
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By the F K G  inequality, for all So < s < 0. 

E AI J/hJ. - .  T..~o[XA( I/I,~] <~ E m Ill,). - .  7"..,.[ X,ll t/hI] 

<<, EA~ t/I,). - .  r. o[ X..l~t/i,~] <~ E _ .  r. o[ XAI ~/hl] 

The last of these quantities obviously converges to -m*.  as h "~ 0. Also the 
first converges to - m *  as h'~0 and then so ,70. ~3~ So if t~<0, then (4.13) 
implies that the limit (not only the superior limit) in (3.3) exists and equals 
- m ' t ,  and so ~ ( t ) = - m * t .  Next, by changing the negative boundary 
condition to positive and using Jensen's inequality, one has 

log E..~, I.:hL -. 7". o{ exp[ t(1/h) a-  IX  t~ i/z,i] } 

/> log(exp(-4fld(1/h) d-  ' ) .  EA,,/hl. +. V, 0{ exp[ t(1/h) d -  'X:, , /h)] } ) 

>>. - -4f ld(1/h)  d ~ + t(1/h) d-  IEAII/h)" + ,  T.O[XA(I/h)] 

So qS(t)~> - 4 f l d +  m * t  for all t > 0. This proves Bo < oo. 

(b) By (4.13) and the F K G  inequality, for all t > 0 ,  

~(t)  ~< t lim sup E ,,  I .,h~. - .  r. 2T, h[ X A~ I/hi] 
h ' - . 0  

= t lim sup EAI2Tt/h)" --. 7". h[X.,t(2Tt/h)] (4.14) 
h ' - , 0  

For each x ~ A ( 2 T t / h ) ,  the cube A(4Tt /h )  centered at x contains A(2Tt /h) .  
So by the FKG inequality and (4.14), 

~(t)  ~< t lim sup E:llaT,/t,i" - .  T./,[O'0] 
h '~ ,0  

Therefore, if the condition (3.5) holds, then ~ ( t ) ~ < - m * t  at t = B / ( 4 T ) .  
This implies ~ ( t ) =  - m * t  for all small t > 0, since ~(t) is convex. Finally, 
Theorem 2 of Schonmann ~jt~ says that the condition (3.5) holds for all 
small T >  0. 

(c) Since for all x ~ R 

'B (x )  = sup{ x t - - ~ (  t): t ~ R}  -- ( fl--~ x - - ~  ( ~ - )  ) 

-/B is nonnegative. ]B is convex and lsc because [ is. It remains to prove 
~B ~ ~ .  Let B > 0. Then we can choose a subsequence h,, "~ 0 as n ~ 
such that 

{ ]} qS -- , l im h,'~ t logEAll/h,,i,-.V.O exp L 2 \ h , , /  XA~l/h,,~ (4.15) 
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By Proposition 4.1, we may assume that {It.4~/h,,i, .r .o(X,, t /h~ 
satisfies an LDP with the constants ((1/h,,) 't-L) and some rate 
function J ,  because otherwise one needs only to choose a subsubsequence, 
which still satisfies (4.15). Then by Theorem 2.1 and Remark 4.1, 
{P..~l/h,,~.-. r.m,,,(XA~w,,,I ~dx)} satisfies an LDP with the same constants 
and rate function given by 

JB( x ) = oC ( x ) - fl-ff-~ x + J * ( fl-ff-ff ) 

V x e R  (4.16) 

where the last step follows from (4.2) with a = 0  at t=flB/2 and (4.15). 
Note that the corresponding pressure function ~g(t) along this subsequence 
h,,N0 [given in (4.1)] is obviously not greater than ~. So by (4.3), 
J ( x )  ~> ~U*(x)>~ ~ * ( x ) =  i(x). We obtain JB>~ i8 from (4.16). Since JB is a 
rate function, i s ( x ) =  0 has at least one solution, and so does ii~(x)= O. 

(d) Let e = i + ( - m * ) .  Note that ~ ' _ ( f l B o / 2 ) = - m *  and 
~'_(t) > - m *  if t >flBo/2. Then by Theorem 23.5 of Rockafellar, ~9~ --m* 
is a subgradient of 45 at e and flBo/2 is a subgradient o f / a t  - m * .  Hence 
o~ <<, flBo/2 and flBo/2 <<. o~. So [ + ( - m * )  = [3Bo/2. Note that the definition of 
B o in (3.4) implies that 

for all B < B o ,  so by the definition o f / ~  in (3.6), for all 0 < B < B o ,  

i.(x) = it x) - ~ -  (x + m*) >~ fl(Bo - B) (x + m*) (4.17) 
2 

This and (c) prove that o ~ =  { - m * } ,  when B < B o .  Now assume that 
B > B  o. If [8(--m*)=O, then the definition of IB implies that 
�9 ( f lB /2)=-m*f lB /2 .  This contradicts the definition of Bo. So 
.~t~ ~ ( - m * ,  co ). Finally, by (a) 

i.e., the line ( f lB /2)x -~( f lB /2)  lies below the graph of f Recall that ~ is 
the set of x where the line and the graph intersect. If ~-B has more than one 
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point, then i has a linear segment with slope fiB~2. Since i has at most 
countably many such segments, .~B must be a singleton except for coun- 
tably many B>O.  I 

P r o o f  o f  Theorem  3.2 .  (a) For  all e > O, choose a subsequence (h,,) 
such that 

lim sup log ~,,I ~/h~, - .  r. h( IX , ,  8/~,~ - ( - m * ) l / >  e) 
h' ,~O 

= , J im  - -  log/~ ,l~/h,,~. - .  r.h,,(IXA~13/h,,~--(--m*)l >>-e) (4.18) 

Let h',, = h , / B .  Then by Proposition 4.1, one may assume that 

{a.,(,/,,~,). - .  T. o(X<,,,/,,~) e dx)} 

satisfies an LDP with constants ((1/h',,) d - I )  and some rate function J .  
Then by Theorem 2.1 and Remark 4.1, 

{a.., ,  ~/,,,,,. - .  T . , , , , ( x . ,  ~/,,,,) ~ d x ) }  = { a n ,  ,/,,;,). - .  T. ~,,~(X,(,/ , , ; ,)  ~ d x ) }  

satisfies an LDP  with the constants (B/h,,) a-~ =(1/h',,) a-~ and the rate 
function J a  given by 

J , ~ ( x ) = . , ( x ) - - f l - f f  x + J *  (fl-ff) (4.19) 

Since qS*(x)=oo for all x < - m * ,  the large-deviation upper bound ~]4~ 
implies that / t . , i /hl .- .  T.o(X.. , ta,  < ~ - - m * - - e )  converges to 0 as h ~0. The 
FKG inequality implies that 

It m I/hl. - .  r. o(X+l~ I/+,~ >1 - - m *  + e) <<.lt _, r. o (X . ,  i/h~ >1 - - m *  + e) 

which converges to 0 as h ".. 0, as pointed out in (3.2). So X.,  ~/~,~ converges 
to - m *  in t~.~1/i,~, - ,  r,o as h~0 .  Hence J ( - m * )  =0 .  Letting x =  - m *  in 
(4.19), we obtain 

~ B m * + g * ( f l - f f ) = J s ( - - m * ) > > . O  



162 Greenwood  and Sun 

As in the proof of Lemma 3.1(c), (4.3) implies that .J >/[  So 

J;B(X)-~- flT(XJ--fl--B2 (X-~-Dl*T) q-~Itl-~,q-,Jf* ( ~ )  

RR /3( B,,  B )  
>~ [(x) - ~-- (x  + m*) >~ (x + m*) (4.20) 

2 Z 

where the last step follows from i~_( -m*)=f iB.~2 ,  seen in the proof of 
Lemma 3,1(d), So the large deviation upper bound (2.5) for 
{# , ,  ~h,,~. - .  -l: J,,,(X., ~ h,.) e dx) } implies that, when B < Bo, 

lira sup log/t . .  h,,~. _ r .h, , ( IX. . th .~-  ( --m*-)l >~e) 
i i ~  y. 

~< - inf ~r 
I . v -  ( - m ~ " l l  ~>~: 

~ < - i n f  [ / (x) -P-~-  (x + m*)] 
/3(B~, - B) ~< 

2 

This and (4.18) prove (3.7). 

(b) Let B > B  o be such that . ~  is a singleton. By Lemma 3.1(d), 
re(B) > - m ~  is the unique point where [~ is 0. By the convexity, /j~(.x-) 
must be nonincreasing in ( - o o ,  m(B)] and nondecreasing in [re(B), oo). 
For any such B > B(>, repeating the argument in the proof of Lemma 3.1(c), 
one concludes that there exists a subsequence h,, "~0 as n---, ~-J such that 
{ l t ,~ , , , .  .7:~h,,(X.,~h,,~edx)} satisfies an LDP with the constants 
((l/h,,) ' t - t  ) and rate function .Y~ ~> [~. So the large-deviation upper bound 
(2.5) implies 

lim sup h;l- '  log p . , i  h,,. -. 7: m, . , ( lX . , ,  h,,~-- m ( B ) l  ~>e)  it ~ :t 
~< - inf .J~(x) ~ - inf / ( x ) =  - c , : < O  (4.21) 

I x - m I B ~ ] ~ > ~ :  Iv-m(BH~>J: 

for all e > 0 .  This proves (3.8) along the subsequence (Bh,,). | 

Remark 4.2. The main reason that the above proof of (a) fails in 
(b) is that the J*(f lB/2)  in (4.19) is the limit of (3.3) along a subsequence 
(h,,) and hence is less than or equal to qS(flB/2)in general. When B < B , ) ,  
one can go further, to (4.20). But (4.20) is useless when B > B o .  If one 
knows that the limit in (3.3) exists, then (3.8) holds along the whole 
sequence h "~ 0. 
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Proof of  Theorem 3.3. Part (a) follows from Corollary 2.2. (b) First 
of all, by Varadhan's Integral Theorem, �9 = I*. The convex conjugate I* 
o f / i s  (conv(I))*. Notice that the rate function I is concave in [ - m } ,  ~r]  
and convex in [ e r ,  m*.], so that conv(I)(x) must be linear for x from - m *  
to some xo>~er and equal to I(x) afterwards. This x .  may be obtained 
from the condition that the line connecting the points ( - m * ,  0) and 
(x. ,  l(xo)) is the line tangent to I at (xo, I(xo)). By solving 

we get 

Hence 

I(x..) 
- - - I ' ( x ~ O ,  xr 
xo + m*, 

x,, = [ 1 - 2(4f r -  oar)/(4fr  + Wr)] m* 

1 4fT-t-CO 7- 
I ' ( x o )  = 

2T 2m* 

conv(1)(x)=~I'(x,,)(m}+x) if x e  [ - m * ,  xo] 
( I( x ) otherwise 

The convex conjugate of conv(I) is 

~--m*.t if t<<,I'(xo) 
~(t)  = l * ( t ) =  ( m , t _ f l [ 4 f r _ 6 r / ( 4 T t ) ]  if t>l'(xo) 

So the Be defined in (3.4) is 2Tl ' (x . )= (4fr+O&)/(2m*). Finally, to prove 
(c) and (d), note that 

I'(xtO = flBo/2 and .re = m 7 -  (3 T/B; = re(Be) 

Since I = ~ * = I * * = c o n v ( I ) ,  the [1~ defined in (3.6)is in fact 

/n(x) = conv(l)(x)  - - ~  x + q5 (-ff-~) (4.22) 

As in the proof of Lemma 3.1(d), it is now easy to see that the solution set 
�9 ~ of / ~ ( x ) = 0  must be a singleton for all BvaBo and .-Ys,,= 
[ - m * ,  re(Be)]. Since I~(x) > [l~(x) if x e ( - m * ,  re(Be)) and IB(x) = [l~(x) 
otherwise, the equation Io(x)=0 has at most one solution for all B r  
and at most two solutions for B = B.. Therefore, it remains to verify that 
IH(m(B))=O for all B # B o  and I~..(--m*)=IB.(m(Bo))=O, which is 
routine. 
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